Abstract

Arginine deiminase (ADI) from Pseudomonas putida was purified using ammonium sulphate precipitation, anion exchange and hydrophobic interaction chromatography. Influence of various chemical compounds (metal ions, reducing agents, sulphydryl agents, and surfactants) on the catalytic activity of ADI was determined was evaluated on the purified ADI. The enzyme displayed high sensitivity towards thiol binding metal ions, chemicals acting on sulfhydryl group, and most of the surfactants. Substrate specificity studies exhibited that among the eight substrate analogues tested, canavanine had the highest affinity for ADI, followed by d-arginine and guanidine. Canavanine decreased the ADI activity up to 50% at its lowest concentration tested (10mM), while d-arginine decreased the ADI activity up to ∼4% at its highest tested concentration (200mM). Differential affinities of the structural analogues of arginine towards ADI were further studied by molecular modeling methods, which included homology modeling, molecular docking and molecular dynamic simulations. The molecular docking studies revealed the critical importance of residues Arg 243, Asp 166, Asp 280, Gly 299 and His 278. RMSDs for protein-ligand complexes were within a range of 1-3Å, suggesting that the complexes were stable throughout the molecular dynamic simulation. The formation of strong hydrogen bonds by residues Asn 160, Asp166, Arg 185, Arg243, Asp280 and Gly 399 in l-arginine were preserved in the case of d-arginine and canavanine and was responsible for higher affinity towards ADI. Calculations of the substrate binding energies revealed that binding energies ΔGbind and ΔGvdw play a critical role for the differential affinities of various substrate analogues towards P.putida ADI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.