Abstract

An enzyme from Treponema denticola that hydrolyzes a synthetic trypsin substrate, N-alpha-benzoyl-L-arginine-p-nitroanilide (BAPNA), was purified to near homogeneity, as judged by gel electrophoresis. The molecular weight of the enzyme was estimated to be ca. 69,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and ca. 50,000 by gel filtration on Sephadex G-100. The pH optimum for the hydrolysis of BAPNA was around 8.5. The enzyme was heat labile and irreversibly inactivated at low pH values. Enzyme activity was enhanced by Ca2+, Mg2+, and Ba2+ but inhibited by Mn2+, Hg2+, Co2+, and Zn2+. Metal chelators and sulfhydryl reagents had no effect on this activity. The enzyme was inhibited by certain protease inhibitors such as diisopropyl fluorophosphate, N-alpha-p-tosyl-L-lysine chloromethyl ketone, phenylmethylsulfonyl fluoride, L-1-tosylamide-2-phenylethylchloromethyl ketone, alpha-1-antitrypsin, and soybean trypsin inhibitor. The Km values for BAPNA and N-alpha-benzoyl-L-arginine ethyl ester were 0.05 and 0.12 mM, respectively, and the Vmax values were higher than those observed with trypsin. Although the purified enzyme hydrolyzed some low-molecular-weight synthetic trypsin substrates, it did not hydrolyze casein, hemoglobin, azocasein, azocoll, bovine serum albumin, or gelatin. Thus, this enzyme is probably not a protease but is capable of hydrolyzing ester, amide, and peptide bonds involving the carboxyl group of arginine and lysine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.