Abstract

The evolutionarily conserved leucine rich repeat (LRR) protein domain is a unique structural motif found in many viral, bacterial, archaeal, and eukaryotic proteins. The LRR domain serves many roles, including being a signaling domain and a pathogen recognition receptor. In the human innate immune system, it serves an essential role by recognizing fragments of bacterial cell walls. Interestingly, the human fungal pathogen Candida albicans also uses an LRR domain-containing protein, Cyrp1, to sense bacterial cell wall fragments. However, the dynamics of signaling and detection of bacterial peptidoglycan fragments by the LRR of Cyr1p remains poorly characterized. Here we develop optimal recombinant expression workflows and provide characterization of the entire region of the LRR domain of Cyr1p as a peripheral membrane protein. Using a newly designed peptidoglycan enrichment bead assay, we demonstrate that this domain can bind bacterial peptidoglycan fragments under native conditions. The new membrane-associated Cyr1p-LRR construct sets the stage for the development of antifungal agents via high-throughput campaigns to inhibit cell wall-Cyr1p interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.