Abstract

A NaCl-activated proteinase produced by Virgibacillus sp. SK33 was purified to homogeneity using phenyl-Sepharose and Sephadex G-75 with a yield of 12% and purification of 2.6-fold. A single protein was detected at approximately 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, three subunits with molecular weights of 27,858, 33,918, and 35,368 Da were obtained from MALDI-TOF mass spectra, implying that the enzyme was a heterotrimer. The isoelectric point of the proteinase was 5.4. Optimum catalytic activity was at 55 degrees C and pH 7.5. The enzyme showed serine characteristics as it was completely inhibited by phenylmethanesulfonyl fluoride. The purified proteinase showed broad specificity toward oxidized insulin B including Gln4, Cys7, Glu13, Ala14, Leu15,17, Tyr16,26, Arg22, Phe24,25, and Lys29. Dominant cleavage sites of the enzyme were Tyr16-Leu17 and Phe25-Tyr26, indicating that it preferably hydrolyzed aromatic amino acids located on the P1 site. Among various substrates studied, the enzyme hydrolyzed anchovy protein to the greatest extent at 4 M NaCl. Activity increased with either CaCl2 or NaCl concentration with the maximum 2-fold increase at either 50 mM CaCl2 or 4 M NaCl. The enzyme was also highly stable up to 500 mM CaCl2 or 4 M NaCl. The proteinase showed high stability in various organic solvents (25%, v/v) including dimethylsulfoxide, methanol, acetonitrile, and ethanol. Results of peptide mass fingerprint and de novo peptide sequencing showed that the purified proteinase is a novel proteinase. The proteinase from Virgibacillus sp. SK33 could have a potential application in high ionic strength environments and aqueous-organic solvent systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.