Abstract

Two peaks of phosphoinositide-specific phospholipase C (PI-PLC) activity were resolved when guinea pig uterus cytosolic proteins were chromatographed on a DEAE-Sepharose column. The first peak of enzyme activity eluting from the DEAE-Sepharose column (PI-PLC I) was further purified to homogeneity, whereas the second peak of enzyme activity was enriched 300-fold. PI-PLC I migrated as a 62-kDa protein on sodium dodecyl sulfate-polyacrylamide gels. Antibodies prepared against PI-PLC I failed to react with PI-PLC II. PI-PLC I hydrolyzed all three phosphoinositides, exhibiting a greater Vmax for phosphatidylinositol 4,5-bisphosphate greater than phosphatidylinositol 4-phosphate greater than phosphatidylinositol. Hydrolysis of phosphatidylinositol was calcium-dependent, whereas significant hydrolysis of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate occurred in the presence of 2.5 mM EGTA. At physiological concentrations of calcium, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were the preferred substrates. Antibodies specific for PI-PLC I reacted with a 62-kDa protein in both the cytosol and membrane fractions from guinea pig uterus. Quantitation of the immunoblots revealed that 25% of the 62-kDa protein was membrane-associated, whereas only 5% of the total enzyme activity was membrane-associated. Approximately 20% of the membrane-bound phospholipase C activity and immunoreactive material were loosely bound, whereas the remainder required detergent extraction for complete solubilization. The 62-kDa protein associated with the membrane fractions did not bind lectin affinity columns, suggesting that it was not glycosylated. PI-PLC I was identified as a phosphoprotein in [32P]orthophosphate-labeled rat basophilic leukemia (RBL-1) cells by two-dimensional gel electrophoresis followed by immunoblotting. In untreated cells, 32P-labeled PI-PLC I was found in the cytosolic fraction. Treatment of RBL-1 cells with those phorbol esters which are known to activate the Ca2+/phospholipid-dependent enzyme protein kinase C, resulted in a time-dependent increase in the phosphorylation of both membrane-bound and cytosolic PI-PLC I. Thus, in RBL-1 cells, protein kinase C may play an important role in the regulation of phospholipase C through protein phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.