Abstract

A novel fibrinolytic enzyme from Rhizopus chinensis 12 was purified through ammonium sulfate precipitation, hydrophobic interaction, ionic exchange, and gel filtration chromatography. The purification protocol resulted in a 893-fold purification of the enzyme, with a final yield of 42.6%. The apparent molecular weight of the enzyme was 18.0 kDa, determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and 16.6 kDa by gel filtration chromatography, which revealed a monomeric form of the enzyme. The isoelectric point of the enzyme estimated by isoelectric focusing electrophoresis was 8.5+/-0.1. The enzyme hydrolyzed fibrin. It cleaved the alpha, beta, and gamma chains of fibrinogen simultaneously, and it also hydrolyzed casein and N-succinyl-Ala-Ala-Pro-Phe-pNA. The enzyme had an optimal temperature of 45 degrees C, and an optimal pH of 10.5. EDTA, PCMB, and PMSF inhibited the activity of the enzyme, and SBTI, Lys, TPCK, and Aprotinine had no obvious inhibition, which suggested that the activity center of the enzyme had hydrosulfuryl and metal. The first 12 amino acids of the N-terminal sequence of the enzyme were S-V-S-E-I-Q-L-M-H-N-L-G and had no homology with that of other fibrinolytic enzyme from other microbes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.