Abstract

β-Turmerin from turmeric ( Curcuma longa) waste grits obtained after extraction of curcumin was purified by successive gel permeation chromatography. Homogeneity of β-turmerin was confirmed by its movement as single band both in SDS-PAGE and as well as in native (basic) PAGE. The apparent molecular mass is ∼34 kDa by SDS-PAGE. It is more hydrophobic protein and showed sharp single peak in RP-HPLC with retention time of 62.17 min. It is a glycoprotein as it shows the presence of amino sugars up to 0.021 gm%. In three different model systems i.e., linolenic acid micelles, erythrocyte membrane systems and liposomes, β-turmerin at 0.125 μM offered 70%, 64%, and 60% inhibition of lipid peroxidation, which is 3200 times more efficient than the standard antioxidants BHA (400 μM) and α-tocopherol (400 μM). β-turmerin inhibited diene–triene and tetraene conjugation up to 54%, 72% and 47%, respectively. β-turmerin also effectively scavenges hydroxyl radicals when compared to BHA and α-tocopherol. β-turmerin (2.5 μM) further inhibited the activation of PMNL mediated by fMLP up to the extent of 75%, where as standards BHA (400 μM) and mannitol (10 μM) inhibited the same to 65% and 55%, respectively. At 0.125 μM dose β-turmerin prevented t-BOOH induced cell death at all time intervals. In addition to the above properties, it is non-toxic to lymphocytes as it did not affect the viability of cells. The mechanism of antioxidant action of β-turmerin could probably be by counteracting/quenching of reactive oxygen species (ROS). We report the purification and characterization of β-turmerin (∼34 kDa), a potent antioxidant protein from turmeric waste grits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call