Abstract

Milk-clotting enzyme (MCE) is the essential active agents in dairy processing. The traditional MCE is mainly obtained from animal sources, in which calf rennet is the most widely used in cheese industry. Traditional MCE substitute is becoming necessary due to its limited production and increased cheese consumption. A novel traditional MCE substitute was produced from Bacillus velezensis DB219 in this study. The DB219 MCE exhibited a notable specific activity of 6,110 Soxhlet units/mg and 3.16-fold purification yield with 28.87% recovery through ammonium sulfate fractionation and DEAE-Sepharose Fast Flow. The purified DB219 MCE was a metalloprotease with a molecular weight of 36 kDa. The DB219 MCE was weak acid resistance and stable at pH 6.0 to 10.0 and temperature <45°C. The highest milk-clotting activity was observed in substrate at pH 5.5 added with 20 to 30 mM CaCl2. The Michaelis constant and maximal velocity for casein were 0.31 g/L and 14.22 μmol/min. The DB219 MCE preferred to hydrolyze β-casein instead of α-casein. The DB219 MCE hydrolyzed α-casein, β-casein, and κ-casein to generate significantly different peptides in comparison with calf rennet and ES6023 MCE (fungal MCE) through SDS-PAGE and reversed-phase HPLC analysis. The DB219 MCE mainly cleaved Thr124-Ile125 and Ser104-Phe105 bonds in κ-casein and had unique casein cleavage sites and peptide composition through LC-MS/MS analysis. The DB219 MCE was potential to be a new milk coagulant and enriched kinds of traditional MCE substitute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call