Abstract

Two exo-polygalacturonases (EC 3.2.1.67) were purified from a commercial Aspergillus niger enzyme preparation by ammonium sulfate precipitation, preparative electrofocusing, anion-exchange and size-exclusion chromatographies. The enzymes had molar masses of 82 kDa (exo-PG1) and 56 kDa (exo-PG2). Exo-PG1 was stable over wider pH and temperature ranges than exo-PG2. Addition of 0.01 mM HgCl 2 increased the exo-PG2 activity 3.4 times but did not affect exo-PG1. Analysis of the reaction products of (reduced) pentagalacturonate by high-performance anion-exchange chromatography revealed that both enzymes split the substrate from the non-reducing end in a multi-chain attack mode. Exo-PG1 had a broad specificity towards oligogalacturonates with different degrees of polymerisation, while digalacturonate was the most favorable substrate for exo-PG2. Both enzymes degraded xylogalacturonan from pea hull in an exo manner to produce galacturonic acid and Xyl–GalA disaccharide, as identified by electrospray ionization-ion trap mass spectrometry (ESI-ITMS). Moreover, exo-PGs split acetylated homogalacturonan in an exo manner, producing galacturonic acid and acetylated galacturonic acid, as shown by ESI-ITMS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.