Abstract
Alcohol dehydrogenases (ADHs) catalyses reversible reduction of carbonyl group to its corresponding alcohols and have been widely employed as versatile biocatalyst due to its high enantioselectivity to produce chiral alcohols. In this study, the (S) - specific alcohol dehydrogenase (S-ADH) enzyme was purified from Candida parapsilosis ATCC 7330. It asymmetrically reduced acetophenone to (S)-1-phenylethanol with > 99% ee with an effective substrate coupled approach for cofactor recycling. In the reverse reaction, i.e., oxidation of 1-phenylethanol, S-ADH produced (R)-1-phenylethanol with > 99% ee via kinetic resolution. S-ADH is a zinc dependent medium chain dehydrogenase/reductase. It was found to be a tetramer in nature with subunit molecular mass of 40 kDa catalysing oxidation and reduction reactions only using NAD+ and NADH as the cofactors respectively with higher affinity for NAD+. Further biochemical characterisation indicated that His and Cys residues play a crucial role in the enzymatic catalysis and requires a reducing environment at the active site. S-ADH was stable at pH 6.0 in reducing acetophenone and pH 8.0 in oxidising 1-phenylethanol at 45 °C with the t1/2 of 6.8 h and 9.0 h respectively. Therefore, purified S-ADH would be a useful biocatalyst in the synthesis of enantiopure (S)- and (R)-1-phenylethanol which are used in the fragrance preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.