Abstract

This work reports the first investigation of Remersonia thermophila hemicellulosic hydrolytic enzyme production, with subsequent purification of an extracellular endo-β-1,4-xylanase (RtXyl) and its application in bread making. The research describes RtXyl purification from sorghum-induced submerged liquid cultures of this moderately thermophilic, aerobic, ascomycete fungus. The purified enzyme is a single subunit protein with a molecular mass of 42 kDa and exhibits glycosyl hydrolase family-10-like activity over a broad pH and temperature range. Optimal activity was measured at pH 6.0 and 65 °C respectively, which is suitable for bread making applications. Substrate specificity studies revealed that RtXyl is purely xylanolytic with no side-activities against other plant polysaccharides. The RtXyl catalytic efficiency (K cat/K m) was highest with oats spelt xylan (810.90 mg mL(-1) s(-1)), wheat arabinoxylan (809.52 mg mL(-1) s(-1)) and beechwood xylan (417.40 mg mL(-1) s(-1)) with less efficiency towards insoluble oats spelt xylan (236.40 mg mL(-1) s(-1)). Hydrolysis products analysed by thin layer chromatography yielded a range of xylosaccharides, predominantly xylotriose and xylobiose. RtXyl application in a basic wheat bread recipe at low dosages (0.297 XU/g) showed its suitability to increase loaf volume by 8.0 % compared with the control bread. RtXyl increased loaf softness by 19.6 % while reducing bread staling by 20.4 % up to 4 days of storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.