Abstract

A novel protease, named PSLTro01, with fibrinolytic and anticoagulant activity was isolated from Porcellio scaber Latreille and was purified by a combination of hollow fibre membrane molecular weight cut-off (MWCO), ammonium sulfate fractionation, gel filtration and ion-exchange chromatography. PSLTro01 is a single-chain protein with a molecular mass of 38,497Da as estimated by non-reduced SDS-PAGE and MALDI-TOF MS spectrometry, and its N-terminal 15 amino acid sequence was determined as DINGGGATLPQPLYQ. PSLTro01 is stable in the range of 20–40°C and pH 6.0–10.0, with a maximum fibrinolytic activity at 40°C and pH 7.0. The PSLTro01-induced fibrinolytic activity was not influenced by K+ or Na+ but was slightly increased by Mg2+ and completely inhibited by aprotinin and pepstatin A. Fibrin plate assays revealed that PSLTro01 could not directly degrade fibrin but was a plasminogen activator. PSLTro01 exhibited high specificity for the substrate S-2251 for plasmin, followed by S-2238 for thrombin and S-2444 for urokinase. Moreover, the fibrinogenolysis pattern of PSLTro01 was Aα-chains>Bβ-chains>γ-chain. Tail-thrombus of the enzyme treated group was significantly shorter than the physiological saline treated group and the thrombus decrement was correlated with the enzyme dose. PSLTro01 prolongs both thrombin time (TT) and activated partial thromboplastin time (APTT). These results indicate that PSLTro01 may have potential applications in the prevention and treatment of thrombosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.