Abstract

Autologous bone marrow transplantation is an alternative therapeutic option for acute myeloid leukemia patients lacking a compatible donor. However, bone marrow from these patients may contain residual leukemic cells that should be ideally eliminated prior to the infusion of the graft. With the aim of developing more efficient protocols of graft purging, adenoviral-mediated gene transfer protocols have been conducted. We studied whether suicide adenoviral vectors expressing the cytosine deaminase gene (AdCD) could be used for selectively killing leukemic WEHI-3B cells. The AdCD transduction followed by the 5-fluorocytosine exposure abrogated the growth of WEHI-3B cells in vitro, with a minimal effect on normal hematopietic progenitors. To test the efficacy of the purging protocol in vivo, bone marrow cells were mixed with syngenic WEHI-3B cells and this chimeric cell population was transduced with AdCD vectors. Infected cells were injected into myeloablated Balb-c mice, which then received a 5-fluorocytosine treatment for 4 days. All mice transplanted with unpurged bone marrow developed leukemia and died. However, 90% of recipients receiving the purging treatment were healthy up to 9 months post-transplantation and had a perfectly re-established hematopoietic system, without any signal of leukemic cell presence. In conclusion, suicide adenoviral vectors are proposed as a tool for the purging of Adenoviral-susceptible myeloid leukemia cells contaminating autologous bone marrow grafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.