Abstract
Lower dimensional materials have gained quite a bit of popularity in the last few decades. Perovskite materials have been studied extensively for their photovoltaic properties. But for large scale application of photovoltaic materials, the thermal properties need to be studied. In this work, using first principles calculations, we have studied the thermal conductivity and thermoelectric performance of quasi two-dimensional (2D) Ruddlesden–Popper phase of perovskite, Cs2SnI2Br2. The Cs atoms are found to be ionically bonded to the halogens leading to low elastic constants and hence give rise to weak bonding. The large anharmonicity in this material causes the lattice thermal conductivity to be ultralow having a value of 0.30 W·m−1·K−1 at 300 K and therefore the thermoelectric figure of merit has been found to be high with a maximum value of 2.08 at 600 K. This lead-free 2D perovskite can be the precursor to a wide variety of similar materials with ultralow thermal conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.