Abstract

This work presents the free vibration characteristics of a thin walled cylindrical shell at the zeroth axial mode number. The cylindrical shell has shear-diaphragm boundary conditions at each end. The thin shell equations by Flügge are used as these equations of motion lead to more accurate results at low frequencies. The zeroth axial mode number is found to occur at the cut-on of the second class of waves. The mode shapes at these natural frequencies result in a purely axial displacement of the middle surface of the shell. High modal density for the first class of waves occurs before the cutting-on of the second class of waves. Beyond this frequency, the dynamic response is dominated by the latter modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call