Abstract
We prove that every ∑-pure-injective module over a serial ring is serial and every ∑-pure-injective faithful indecomposable module over a serial ring is ∑-injective. Moreover, every serial ring that can be realized as the endomorphism ring of an artinian module has finite Krull dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.