Abstract

Tumors are complex masses composed of malignant and non-malignant cells. Variation in tumor purity (proportion of cancer cells in a sample) can both confound integrative analysis and enable studies of tumor heterogeneity. Here we developed PUREE, which uses a weakly supervised learning approach to infer tumor purity from a tumor gene expression profile. PUREE was trained on gene expression data and genomic consensus purity estimates from 7864 solid tumor samples. PUREE predicted purity with high accuracy across distinct solid tumor types and generalized to tumor samples from unseen tumor types and cohorts. Gene features of PUREE were further validated using single-cell RNA-seq data from distinct tumor types. In a comprehensive benchmark, PUREE outperformed existing transcriptome-based purity estimation approaches. Overall, PUREE is a highly accurate and versatile method for estimating tumor purity and interrogating tumor heterogeneity from bulk tumor gene expression data, which can complement genomics-based approaches or be used in settings where genomic data is unavailable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.