Abstract

The purpose of this article is to examine explanations for pure-tone average-spondee threshold differences in functional hearing loss. Loudness magnitude estimation functions were obtained from 24 participants for pure tones (0.5 and 1.0 kHz), vowels, spondees, and speech-shaped noise as a function of level (20-90 dB SPL). Participants listened monaurally through earphones. Loudness predictions were obtained for the same stimuli by using a computational, dynamic loudness model. When evaluated at the same SPL, speech-shaped noise was judged louder than vowels/spondees, which were judged louder than tones. Equal-loudness levels were inferred from fitted loudness functions for the group. For the clinical application, the 2.1-dB difference between spondees and tones at equal loudness became a 12.1-dB difference when the stimuli were converted from SPL to HL. Nearly all of the pure-tone average-spondee threshold differences in functional hearing loss are attributable to references for calibration for 0 dB HL for tones and speech, which are based on detection and recognition, respectively. The recognition threshold for spondees is roughly 9 dB higher than the speech detection threshold; persons feigning a loss, who base loss magnitude on loudness, do not consider this difference. Furthermore, the dynamic loudness model was more accurate than the static model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call