Abstract
This paper originated with our interest in the open question “If every pure subgroup of an LCA groupGis closed, mustGbe discrete ?” that was raised by Armacost. The answer was surprisingly easy, but led to some interesting questions. We attempted to characterise those LCA groups that contain a proper pure dense subgroup, and found that every non-discrete torsion-free LCA group contains a proper pure dense subgroup; so does every non-discrete infinite self-dual torsion LCA group. We also give a necessary and sufficient condition for a torsion LCA group to contain a proper pure dense subgroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.