Abstract

We consider the equations of a linear Maxwell fluid with spatially varying coefficients. Pure stress modes are solutions with zero velocity but nonzero stresses. We derive equations to characterize such solutions. In two dimensions, we find that under generic hypotheses only certain “trivial” solutions exist. In three dimensions, on the other hand, there exist nontrivial solutions. To get them, we derive a system of partial differential equations whose type (elliptic or hyperbolic) depends on the sign of the Gauss curvature of level surfaces of the relaxation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.