Abstract
It is well known that the rock-paper-scissors game has no pure saddle point. We show that this holds more generally: A symmetric two-player zero-sum game has a pure saddle point if and only if it is not a generalized rock-paper-scissors game. Moreover, we show that every finite symmetric quasiconcave two-player zero-sum game has a pure saddle point. Further sufficient conditions for existence are provided. We apply our theory to a rich collection of examples by noting that the class of symmetric two-player zero-sum games coincides with the class of relative payoff games associated with symmetric two-player games. This allows us to derive results on the existence of a finite population evolutionary stable strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.