Abstract

We examine the problem of finding the minimum number of Pauli measurements needed to uniquely determine an arbitrary $n$-qubit pure state among all quantum states. We show that only $11$ Pauli measurements are needed to determine an arbitrary two-qubit pure state compared to the full quantum state tomography with $16$ measurements, and only $31$ Pauli measurements are needed to determine an arbitrary three-qubit pure state compared to the full quantum state tomography with $64$ measurements. We demonstrate that our protocol is robust under depolarizing error with simulated random pure states. We experimentally test the protocol on two- and three-qubit systems with nuclear magnetic resonance techniques. We show that the pure state tomography protocol saves us a number of measurements without considerable loss of fidelity. We compare our protocol with same-size sets of randomly selected Pauli operators and find that our selected set of Pauli measurements significantly outperforms those random sampling sets. As a direct application, our scheme can also be used to reduce the number of settings needed for pure-state tomography in quantum optical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call