Abstract

As is well known, the absorption of circularly polarized light in semiconductors results in optical orientation of electron spins and helicity-dependent electric photocurrent, and the absorption of linearly polarized light is accompanied by optical alignment of electron momenta. Here, we show that the absorption of unpolarized light leads to the generation of a pure spin current, although both the average electron spin and electric current vanish. We demonstrate this for direct interband and intersubband as well as indirect intraband (Drude-like) optical transitions in semiconductor quantum wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call