Abstract
We conducted comprehensive theoretical research on rotational stimulated Raman scattering (SRS) of hydrogen molecules in hollow-core fibers. A reliable model for describing the steady-state rotational SRS of hydrogen was established and the influences of various factors was investigated. To verify the theoretical model, a single-pass fiber gas Raman laser (FGRL) based on hydrogen-filled hollow-core photonic crystal fibers pumped by a 1.5 µm nanosecond-pulsed fiber amplifier was constructed. Experimental results were congruent with simulation results. As the output powers and pulse shapes can be well calculated, the model can offer guidance for FGRL investigation, particularly for achieving high-efficiency and high-power FGRLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.