Abstract

The molecular beam Fourier transform microwave spectra of two isotopomers of the 1:1 complex between indole and water have been measured. The water molecule has been reliably located in the complex from these experimental data. The complex has a Cs symmetry with an N–H⋯O hydrogen bond and the plane of the H2O molecule perpendicular to the indole plane. The two-dimensional potential energy surface of the internal rotation and inversion of water in the complex, evaluated with B3LYP/6-31G** or MP2/6-31G** quantum chemical calculations, suggests the tunneling motion of water to take place with the contribute of both motions. The experimental evidence combined with flexible model calculations, indicate, however, that the tunneling motion is mainly an internal rotation of water around its C2 symmetry axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.