Abstract

Fourier-transformable Radon measures are called doubly sparse when both the measure and its transform are pure point measures with sparse support. Their structure is reasonably well understood in Euclidean space, based on the use of tempered distributions. Here, we extend the theory to second countable, locally compact Abelian groups, where we can employ general cut and project schemes and the structure of weighted model combs, along with the theory of almost periodic measures. In particular, for measures with Meyer set support, we characterise sparseness of the Fourier--Bohr spectrum via conditions of crystallographic type, and derive representations of the measures in terms of trigonometric polynomials. More generally, we analyse positive definite, doubly sparse measures in a natural cut and project setting, which results in a Poisson summation type formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.