Abstract

We prove for every graph H there exists ɛ > 0 such that, for every graph G with |G|≥2, if no induced subgraph of G is a subdivision of H, then either some vertex of G has at least ɛ|G| neighbours, or there are two disjoint sets A, B ⊆ V(G) with |A|,|B|≥ɛ|G| such that no edge joins A and B. It follows that for every graph H, there exists c>0 such that for every graph G, if no induced subgraph of G or its complement is a subdivision of H, then G has a clique or stable set of cardinality at least |G|c. This is related to the Erdős-Hajnal conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.