Abstract

This paper presents a review of differences and similarities of in-tube heat transfer and pressure drop between ammonia (NH3) and carbon dioxide (CO2) from the perspective of the design of heat exchangers for NH3 two-stage and CO2/NH3 cascade refrigeration systems. The focus is on differences in thermophysical properties and thus different characteristics of heat transfer and pressure drop. A brief summary of published literatures about CO2/NH3 cascade refrigeration systems is provided and literature review of available correlations and developed correlations are presented for flow boiling and condensation heat transfer and pressure drop. Because of large deviation of calculated values with exiting correlations from measured results, a new correlation to predict flow condensation heat transfer coefficients was developed based on experimental results for CO2 at -15°C. From comparison of measured and predicted values, it is shown that some correlations, previously published in open literature, can be used to calculate flow boiling heat transfer coefficients for NH3 at -20°C, if a flow pattern can be appropriately determined for a flow condition. Also, it is presented that existing correlations can predict well the heat transfer coefficients for CO2 flow boiling at -15 and -30°C. It is shown that some correlations can predict pressure drop relatively well for NH3 and CO2 two-phase flow. The NH3 and CO2 flow evaporation heat transfer and pressure drop characteristics at -40°C are compared with predicted values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.