Abstract

Low temperature steam reforming of methane mainly to hydrogen and carbon dioxide (CH 4 + 2H 2O → 4H 2 + CO 2) has been performed at 773 and 823 K over a commercial nickel catalyst in an equilibrium-shift reactor with an 11-μm thick palladium membrane (Mem-L) on a stainless steel porous metal filter. The methane conversion with the reactor is significantly higher than its equilibrium value without membrane due to the equilibrium-shift combined with separation of pure hydrogen through the membrane. The methane conversion in a reactor with an 8-μm membrane (Mem-H) is similar to that with Mem-L, although the hydrogen permeance through Mem-H is almost double of that through Mem-L. The amount of hydrogen separated in the reaction with Mem-H is significantly large, showing that the hydrogen separation overwhelms the hydrogen production because of the insufficient catalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.