Abstract

We use density-matrix renormalization group, applied to a one-dimensional model of continuum Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and numbers of atoms. We train and test a machine-learned approximation to $F[n]$, the universal part of the electronic density functional, to within quantum chemical accuracy. Our calculation (a) bypasses the standard Kohn-Sham approach, avoiding the need to find orbitals, (b) includes the strong correlation of highly-stretched bonds without any specific difficulty (unlike all standard DFT approximations) and (c) is so accurate that it can be used to find the energy in the thermodynamic limit to quantum chemical accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.