Abstract

AbstractBismuth‐based hybrid perovskites are candidates for lead‐free and air‐stable photovoltaics, but poor surface morphologies and a high band‐gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth‐based thin‐film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution‐processed AgBi2I7 thin films are prepared by spin‐coating silver and bismuth precursors dissolved in n‐butylamine and annealing under an N2 atmosphere. X‐ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2I7 thin films exhibit dense and pinhole‐free surface morphologies with grains ranging in size from 200–800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.