Abstract

One of the biggest challenge that face optoelectronic and photovoltaic devices is the necessity to provide a reliable alternative to transparent conducting oxide (TCO) like Indium Thin Oxide (ITO). We recently published a study proposing a method to produce transparent conductive electrodes only based on carbon materials. In a first step, we use the Pulsed Laser Deposition (PLD) to produce high performance DLC. Those thin films own very interesting properties in kindship with diamond, like high transparency in the visible range, chemical inertness and biocompatibility. In addition, the DLC is a perfect electrical insulator and presents a relative high opacity in ultra-violet (UV). This particularity has a great interest to perform, in a second step, UV laser annealing over the DLC surface. The aim is to break the existing diamond bindings (sp3 hybridization) on the surface and allow atoms being reorganized in graphitic bindings (sp2 hybridization). We demonstrate that the increase of atomic graphitic bindings leads to a valuable surface conductivity. According to optimized annealing parameters, the surface conductivity reaches values comparable to ITO. We also show that the laser treatments only sparsely affects the DLC transparency. Moreover, this full laser-based process remains compatible with the standard microelectronic technological steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.