Abstract

The induction of pure and mosaic clones has been studied in haploid G1 cells of Saccharomyces cerevisiae. Following treatments with ultraviolet light, methyl methanesulfonate, ethyl methanesulfonate, nitrous acid, and N-methyl-N'-nitro-N-nitrosoguanidine, the relative proportions of pure mutant clones varied from 25 to 100% at comparable survival levels. Ultraviolet light and methyl methanesulfonate produced mainly pure mutant clones, whereas ethyl methanesulfonate and nitrous acid produced mainly mosaics at 59 to 100% survival levels. The ratio of pure to mosaic clones induced by nitrosoguanidine fell between these two classes. These results are consistent with a classification of mutagens on the basis of repair and replication-dependent mechanisms of mutagenesis in other organisms. Agents having actions similar to ultraviolet light may produce mainly pure clones through a pre-replicative process involving an error-prone DNA repair process. Others may produce mainly mosaic mutants due to the different nature of DNA lesions which may require a replication-dependent process for fixation of mutations. Preliminary data from combined treatments of mutagens belonging to two different classes (i.e. ultraviolet light and nitrous acid) suggest the possibility of an interaction between these agents, resulting in a higher proportion of pure clones, possibly due to an inducible process. Studies of induced frequencies of pure and mosaic clones may be useful in the characterization of mutagens with functional differences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call