Abstract

Solution-processable polyimides of intrinsic microporosity (PIM-PIs) comprising relatively inflexible and contorted backbones have demonstrated outstanding molecular-sieving behavior in membrane-based separation of gas/gas pairs. In this work, the effects of systematically increasing intra-chain rigidity on the propylene/propane separation properties were compared for PIM-PIs made from 2,3,5,6-tetramethyl-1,4-phenylene diamine (TMPD) and (i) spiro-centered dianhyride (SPDA-TMPD or PIM-PI-1) and (ii) 9,10-diisopropyltriptycene-based dianhydride (TPDA-TMPD or KAUST PI-1). Pure-gas experiments at 2bar and 35°C showed significant increases in C3H6 permeability and C3H6/C3H8 selectivity by transitioning from PIM-PI-1 (P(C3H6)=393 Barrer, α(C3H6/C3H8)=6) to KAUST-PI-1 (P(C3H6)=817Barrer, α(C3H6/C3H8)=16), positioning KAUST-PI-1 considerably above the experimentally observed pure-gas C3H6/C3H8 polymer upper bound. However, 50:50 C3H6/C3H8 mixed-gas feeds induced significant losses in C3H6 permeability and C3H6/C3H8 selectivity relative to the 2bar pure-gas data for PIM-PI-1 and KAUST-PI-1 as the C3H6/C3H8 selectivity dropped from 6 to 3 and 16 to 5, respectively, at 2bar C3H6 partial pressure due to plasticization and competitive sorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call