Abstract
Pure and cobalt-substituted zinc ferrites were successfully synthesized employing a simple co-precipitation route. CoxZn0.04−xFe2O4 (x = 0, 0.01, 0.02) physical properties have been investigated employing comprehensive characterization studies. XRD results confirmed the cobalt substitution in zinc-ferrite magnetic ceramics. SEM analysis revealed non-uniform cluster formation with large agglomeration and more number of spherical grain nanoparticles in the range of 30–150 nm. Raman phonon vibration modes [F2g(1) + F2g(2) + A1g] revealed cubic zinc-ferrite phase and cobalt substitution. Product-predominant blue–green emission was observed in PL studies. IR results confirmed ferrite tetrahedral (~ 540–565cm−1) and octahedral sites’ (~ 428 cm−1) metal oxygen vibrations. Electrochemical studies confirmed an appreciable increase in specific capacitance of Co0.02Zn0.02Fe2O4 around 377 F/g at 10 mV/s scan rate. Cobalt substitution in zinc spinel ferrite structure revealed dominant influence on structural, optical, and electrochemical properties of the obtained product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.