Abstract
Pure adaptive seach iteratively constructs a sequence of interior points uniformly distributed within the corresponding sequence of nested improving regions of the feasible space. That is, at any iteration, the next point in the sequence is uniformly distributed over the region of feasible space containing all points that are strictly superior in value to the previous points in the sequence. The complexity of this algorithm is measured by the expected number of iterations required to achieve a given accuracy of solution. We show that for global mathematical programs satisfying the Lipschitz condition, its complexity increases at mostlinearly in the dimension of the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.