Abstract
In recent years development of computer systems were able to learn and adapt without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data is known as machine learning.In this phase sales of different lubricants were predicted using a multivariate time series forecasting algorithm.Previously it showed that the model was accurate in predicting the engine oil sales for a particular time.Using Regressions the accuracy of sales prediction was less (74%) and the models like SVM and Random forest were showing signs of over fitting.The accuracy obtained in the multivariate time series forecasting was good than other algorithms.Time series algorithms are used extensively for forecasting time-based data.In time series ARIMA,SARIMA and SARIMAX are the common methods to forecast time based data.SARIMAX are efficient in forecasting data which has seasonality trends than ARIMA which are good in forecasting data which is stationary in nature Time series methods are extensively used for forecasting time based data.In time series ARIMA,SARIMA and SARIMAX are the common methods to forecast tie based data.ARIMA is the abbreviation of Auto Regressive Integrated Moving Average a model which explains a given time series model based on its lags and other values.SARIMAX is the abbreviation of Seasonal Auto Regressive Integrated Moving Average with Xegeneous variables. ARIMA model is best for forecasting stationary time series data and SARIMAX is used for forecasting values which is seasonal in nature.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Science, Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.