Abstract
Standard cavity cooling of atoms or dielectric particles is based on the action of dispersive optical forces in high-finesse cavities. We investigate here a complementary regime characterized by large cavity losses, resembling the standard Doppler cooling technique. For a single two-level emitter a modification of the cooling rate is obtained from the Purcell enhancement of spontaneous emission in the large cooperativity limit. This mechanism is aimed at cooling quantum emitters without closed transitions, which is the case for molecular systems, where the Purcell effect can mitigate the loss of population from the cooling cycle. We extend our analytical formulation to the many-particle case governed by small individual coupling, but exhibiting large collective coupling. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.