Abstract

Integration of solid-state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic-based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride (hBN) have emerged as a viable candidate over the last years. While the fundamental physical properties have been intensively studied, only a few works have focused on the emitter integration into photonic resonators. Yet, for a potential quantum photonic material platform, the integration with nanophotonic cavities is an important cornerstone, as it enables the deliberate tuning of the spontaneous emission and the improved readout of distinct transitions for a quantum emitter. In this work, the resonant tuning of a monolithic cavity integrated hBN quantum emitter is demonstrated through gas condensation at cryogenic temperature. In resonance, an emission enhancement and lifetime reduction are observed, with an estimate for the Purcell factor of ≈15.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.