Abstract

Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications. Here, we demonstrate an essential component of such a system in the form of a Purcell-enhanced single-photon source based on a quantum dot coupled to a robust on-chip integrated resonator. For that, we develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides. Under resonant excitation conditions, we observe an over 2-fold spontaneous emission rate enhancement using Purcell effect and gain a full coherent optical control of a QD-two-level system via Rabi oscillations. Furthermore, we demonstrate an on-demand single-photon generation with strongly suppressed multiphoton emission probability as low as 1% and two-photon interference with visibility up to 95%. This integrated single-photon source can be readily scaled up, promising a realistic pathway for scalable on-chip linear optical quantum simulation, quantum computation, and quantum networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.