Abstract
Silicon nanocrystals show a significant shift between the strong absorption in the blue–ultraviolet region and their characteristic red–near-infrared emission as well as space separated-quantum cutting when short wavelength photons are absorbed. These two effects can be used to increase the efficiency of crystalline silicon solar cells. We fabricated high quality interdigitated back-contact crystalline silicon solar cells in an industrial pilot line and coated them with optimized silicon nanocrystals layers in a cost effective way. Here we demonstrate an increase of 0.8% of the power conversion efficiency of the interdigitated back-contact cell by the silicon nanocrystals layer. In addition, we prove that this increase is due to a combination of a better surface passivation, a better optical coating, and of the luminescent downshifting effect. Moreover we demonstrated that the engineering of the local density of photon states, thanks to the Purcell effect, is instrumental in order to exploit this effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Solar Energy Materials and Solar Cells
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.