Abstract

Accumulating evidence suggests that the brain can efficiently process both external and internal information. The processing of internal information is a distinct “offline” cognitive mode that requires not only spontaneously generated mental activity; it has also been hypothesized to require a decoupling of attention from perception in order to separate competing streams of internal and external information. This process of decoupling is potentially adaptive because it could prevent unimportant external events from disrupting an internal train of thought. Here, we use measurements of pupil diameter (PD) to provide concrete evidence for the role of decoupling during spontaneous cognitive activity. First, during periods conducive to offline thought but not during periods of task focus, PD exhibited spontaneous activity decoupled from task events. Second, periods requiring external task focus were characterized by large task evoked changes in PD; in contrast, encoding failures were preceded by episodes of high spontaneous baseline PD activity. Finally, high spontaneous PD activity also occurred prior to only the slowest 20% of correct responses, suggesting high baseline PD indexes a distinct mode of cognitive functioning. Together, these data are consistent with the decoupling hypothesis, which suggests that the capacity for spontaneous cognitive activity depends upon minimizing disruptions from the external world.

Highlights

  • Taking a shower, queuing for coffee, or riding the bus are all everyday tasks with minimal cognitive demands that allow the mind to wander [1,2]

  • The current paper examines whether pupil diameter (PD) exhibits these two distinct modes of activity predicted by the decoupling hypothesis: (i) an online mode reflecting a state of enhanced processing of external task relevant information in which baseline PD activity is suppressed and transient responses to external events are maximized and (ii) an offline mode involving a state of enhanced processing of internally generated events in which transient responses to task events are reduced and baseline levels of PD are enhanced

  • Experiment Two measured PD for participants performing both tasks to determine (i) if the non-colored stimuli in the Working Memory (WM) task would evoke a transient increase in PD (P1) and (ii) if no such increase in PD would be observed in response to these same events in the Choice Reaction Time (CRT) task (P2)

Read more

Summary

Introduction

Taking a shower, queuing for coffee, or riding the bus are all everyday tasks with minimal cognitive demands that allow the mind to wander [1,2] These common experiences of dual engagement or multi-tasking illustrate that mental activity is not confined to the online processing of sensory information (e.g. thoughts which are more obviously derived from an external referent and are not especially imaginative in nature); it has an offline mode in which cognition is initiated spontaneously [3,4,5]. Decoupling could explain our capacity for orderly, internally guided trains of thought because it would prevent external events from interfering with such offline cognitive processes [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.