Abstract

To investigate the pupillary response to moving stimuli of different speeds and the influence of different luminance environments, 28 participants with normal or corrected-to-normal vision were included. The participants were required to track moving optotypes horizontally, and their pupils were recorded on video with an infrared camera. Stimuli of different speeds from 10 to 60 degree per seconds were presented in low (0.01 cd/m2) and moderate (30 cd/m2) luminance environments. Experiment 1 demonstrated that the motion stimuli induced pupil dilation in a speed-dependent pattern. The pupil dilation increased as the speed increased, and the pupil dilation gradually increased, then reached saturation. Experiment 2 showed that a stimulus targeting the rod- or cone-mediated pathway could induce pupil dilation in a similar speed-dependent pattern. The absolute but not relative pupil dilation in the cone paradigm was significantly larger than that in the rod paradigm. As the speed increased, the pupil dilation in the cone paradigm reached saturation at speed slower than the rod paradigm. Motion stimuli induced pupil dilation in a speed-dependent pattern, and as the motion speed increased, the pupil dilation gradually increased and reached saturation. The speed required to reach saturation in the cone paradigm was slower than in the rod paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.