Abstract

The Pupae of Bombyx mori and Samia ricini are a source of high-quality proteins and essential nutrient elements for human. Recent studies revealed that protein extracted from pupae possessed therapeutic benefits for the treatment of many diseases. However, the anticancer activity of protein extracts from the pupae of B. mori and S. ricini has been rarely reported. Our objective was to study the effect of protein extracts from the pupae of B. mori and S. ricini on cytotoxicity and expression of pro-inflammatory cytokines; IL-6, IL-1β and TNF-α, in breast cancer cells (MCF-7). Additionally, anticancer action of protein extracted from the pupae was further investigated through biomolecular changes in MCF-7 cells using Fourier transform infrared (FTIR) spectroscopy. Pupae protein extracts of B. mori exhibited cytotoxic effects with an IC50 value of 15.23 + 0.4 μg/mL with higher selectivity than doxorubicin on MCF-7 cells. Fourier transform infrared (FTIR) spectroscopy revealed that lipid contents in MCF-7 cells treated with pupae protein extracts of B. mori were higher than untreated cells. Treatment with protein extracts from pupae of B. mori or S. ricini caused significantly reduced protein and nucleic acid contents of MCF-7 cells. The expression of IL-6, IL-1β and TNF-α in MCF-7 treated cells was investigated using RT-qPCR and ELISA. Our results revealed that protein extracts from the pupae of B. mori or S. ricini significantly decreased IL-6, IL-1β and TNF-α in MCF-7 cells both at mRNA and protein levels. Expression of IL-6 and IL-1β in MCF-7 treated cells, especially IL-6, was strongly reduced compared to untreated cells, while TNF-α expression was slightly decreased. These findings suggest that pupae protein extracted from B. mori or S. ricini may play a role in breast cancer through a down-regulatory action on the expression of IL-6, IL-1β and TNF-α, and may also exert anticancer effects by causing biochemical changes of lipids, proteins and nucleic acids. These findings indicate that pupae protein extracted from B. mori or S. ricini may provide a potential novel therapeutic target for breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call