Abstract

PurposePunching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as an environmental-friendly alternative to traditional RC structures, on punching behavior of these slabs was not sufficiently investigated in the literature. Hence, this paper aims to experimentally study the effect of using recycled coarse aggregate (RCA) on the punching shear capacity (PSC) of RC flat slabs. The RCA is produced by crushing of waste of concrete standard cubes obtained from compression tests.Design/methodology/approachA total of 12 slab-column connection specimens with different slab thicknesses (140, 160 and 200 mm) and different RCA percentages (0%, 30% and 70%) were prepared and tested under a central point load, to test its effect on the behavior of flat slabs. The punching failure loads of the tested specimens were compared with those obtained according to the provisions of different international building codes.FindingsCompared with natural aggregate concrete, mixes with 30% and 70% RCA experienced reductions in the compressive that did not exceed 4% and 21%, while reductions of 4% and 13% were observed for the tensile strength, respectively. The increase in the amount of RCA reduced the PSC by 0%–7%, 0%–4% and 4%–10% for slabs with a thickness of 140, 160 and 200 mm, respectively. For slabs with punching shear reinforcement (PSR), ACI 318 provided the closest estimation for the PSC by 9%, whereas EURO 2 overestimated the PSC by 25% and ECP 203 underestimated the PSC by 41%.Research limitations/implicationsThe provided conclusions are obtained from the conducted experimental work where a constant W/C ratio, aggregate type and a maximum aggregate size of 19 mm for the RCA were adopted.Originality/valueEnhancement in the behavior of flat slabs with various thicknesses and amounts of RCA because of introducing PSR is experimentally evaluated. The failure loads of the tested slabs with recycled and normal coarse aggregates were compared against different code provisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call