Abstract

Fibre-reinforced polymer (FRP) provides an alternative reinforcement for concrete flat slabs. This research proposes a hybrid machine learning model for predicting the ultimate punching shear capacity of FRP-reinforced slabs. The model employs the least squares support vector machine (LS-SVM) to discover the mapping between the influencing factors and the slab punching capacity. Furthermore, the firefly algorithm (FA), a population-based metaheuristic, is utilised to facilitate the LS-SVM training. A data-set which contains actual tests of FRP-reinforced concrete slabs is utilised to construct and verify the proposed approach. The contribution of this research is to establish a hybrid machine method, based on the LS-SVM and FA algorithms, for meliorating the prediction accuracy of FRP-reinforced slabs’ ultimate punching shear capacity. Experimental results demonstrate that the new model has achieved roughly 55 and 15% reductions in terms of Root Mean Squared Error compared with the formula-based and Artificial Neural Network methods, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.