Abstract

Hybrid supercapacitors composed of a punched H2Ti12O25 (P-HTO) anode and an activated carbon (AC) cathode were designed for high energy/power hybrid supercapacitors. The hybrid supercapacitors delivered a high reversible capacitance of 72.1 F/g at a current density of 0.5 A/g, and 95.3% of the capacity was retained after 20000 cycles. Furthermore, the hybrid supercapacitors using P-HTO anode and AC cathode (P-HTO/AC) electrodes demonstrated energy densities of 28.4–86.7 Wh/kg and power densities of 226.7–12618.5 W/kg, which can meet the requirement of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). The performances of the hybrid supercapacitors using P-HTO/AC were explained in terms of the synergistic effect of high-power P-HTO and high-energy AC. Therefore, we concluded that the P-HTO/AC composition will be useful in next-generation hybrid supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.