Abstract

Electronic and vibrational coherences of Cl2 embedded in solid Ar are investigated by exciting to the B state with a phase-locked pulse pair from an unbalanced Michelson interferometer, where the chirp difference matches the B state anharmonicity. Recording the A' --> X fluorescence after relaxation is compared to probing to charge transfer states by a third pulse. The three-pulse experiment delivers more details on the decoherence processes. The signal modulation due to phase tuning up to the third vibrational round-trip time indicates that the electronic coherence in the B <-- X transition is preserved for more than 660 fs in the solid Ar environment where many body electronic interactions take place. Vibrational coherence lasts longer than 3 ps according to the observed half revival of the wavepacket. Control of the coupling between wavepacket motion and lattice oscillation is demonstrated by tuning the relative phase between the phase-locked pulses, preparing wavepackets predominantly composed of either zero-phonon lines or phonon side bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.