Abstract

A compact cooling system is examined which capitalizes upon fluid density differences between two vertical, parallel, interconnected tubes to achieve a pumpless cooling loop. A heat-dissipating device is incorporated into a boiler at the bottom of the hot tube. The large density differences between the two tubes produces a substantial nonequilibrium in hydrostatic pressure, drawing liquid downwards through the cold tube as a two-phase mixture is released upwards in the hot tube. Cooling with this pumpless loop is fundamentally different from, and far superior to, pool boiling thermosyphons because of the former’s ability to separate the path of replenishment liquid from that of the released vapor. Experiments were performed to explore the effects of boiler gap (separation distance between the boiling surface and opposite insulating wall) on cooling performance and critical heat flux (CHF) for water and FC-72. The gap, which is the primary measure of boiler miniaturization, was varied from 0.051 to 21.46 mm. For large gaps, CHF showed insignificant dependence on the gap for both fluids. However, small gaps produced CHF variations that were both drastic and which followed opposite trends for the two fluids. Decreasing the gap below 3.56 mm produced a substantial rise in CHF for FC-72. For water, CHF was fairly insensitive down to 0.51 mm, below which it began to decrease sharply. These trends are shown to be closely related to the small surface tension and contact angle of FC-72 producing very small bubbles which can easily pass through narrow gaps in FC-72, while much larger bubbles in water obstruct liquid replenishment in narrow gaps. A numerical model is constructed to determine how the gap influences the various components of pressure drop, velocities, coolant flow rate, and hence system response to heat input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.