Abstract
Pumpkin has been employed for the first time as a renewable, low-cost precursor for the preparation of porous carbon materials with excellent performance. Unlike most other precursors, pumpkin is rich in sugars and starch, and it has advantageous properties for large-scale production. The as-prepared materials adopted a unique morphology that consisted of numerous fused sphere-like carbon grains with a high specific surface area (2968 m(2) g(-1) ), abundant micro and mesopores, and excellent electrochemical properties. The pumpkin-derived activated carbon (PAC) material not only exhibited a high specific capacitance of 419 F g(-1) , but also showed considerable cycling stability, with 93.6 % retention after 10 000 cycles. Moreover, a symmetrical supercapacitor that was based on PAC showed a high energy density of 22.1 W h kg(-1) in aqueous electrolyte. These superior properties demonstrate that PAC holds great promise for applications in electrochemical energy-storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.